Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 36(3): 557-574.e10, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237601

RESUMEN

Augmented CD4+ T cell response in autoimmunity is characterized by extensive metabolic reprogramming. However, the epigenetic molecule that drives the metabolic adaptation of CD4+ T cells remains largely unknown. Here, we show that lysine acetyltransferase 6A (KAT6A), an epigenetic modulator that is clinically associated with autoimmunity, orchestrates the metabolic reprogramming of glucose in CD4+ T cells. KAT6A is required for the proliferation and differentiation of proinflammatory CD4+ T cell subsets in vitro, and mice with KAT6A-deficient CD4+ T cells are less susceptible to experimental autoimmune encephalomyelitis and colitis. Mechanistically, KAT6A orchestrates the abundance of histone acetylation at the chromatin where several glycolytic genes are located, thus affecting glucose metabolic reprogramming and subsequent CD4+ T cell responses. Treatment with KAT6A small-molecule inhibitors in mouse models shows high therapeutic value for targeting KAT6A in autoimmunity. Our study provides novel insights into the epigenetic programming of immunometabolism and suggests potential therapeutic targets for patients with autoimmunity.


Asunto(s)
Lisina Acetiltransferasas , Linfocitos T , Animales , Humanos , Ratones , Autoinmunidad/genética , Linfocitos T CD4-Positivos/metabolismo , Epigénesis Genética , Glucosa/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Lisina Acetiltransferasas/genética , Lisina Acetiltransferasas/metabolismo , Linfocitos T/metabolismo
2.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(6): 633-641, 2021 Dec 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-34859622

RESUMEN

OBJECTIVES: To identify the differentially expressed genes (DEGs) during the pathogenesis of periodontitis by bioinformatics analysis. METHODS: GEO2R was used to screen DEGs in GSE10334 and GSE16134. Then, the overlapped DEGs were used for further analysis. g:Profiler was used to perform Gene Ontology analysis and pathway analysis for upregulated and downregulated DEGs. The STRING database was used to construct the protein-protein interaction (PPI) network, which was further visua-lized and analyzed by Cytoscape software. Hub genes and key modules were identified by cytoHubba and MCODE plug-ins, respectively. Finally, transcription factors were predicted via iRegulon plug-in. RESULTS: A total of 196 DEGs were identified, including 139 upregulated and 57 downregulated DEGs. Functional enrichment analysis showed that the upregulated DEGs were mainly enriched in immune-related pathways including immune system, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, leukocyte transendothelial migration, and chemokine receptors bind chemokines. On the contrary, the downregulated DEGs were mainly related to the formation of the cornified envelope and keratinization. The identified hub genes in the PPI network were CXCL8, CXCL1, CXCR4, SEL, CD19, and IKZF1. The top three modules were involved in chemokine response, B cell receptor signaling pathway, and interleukin response, respectively. iRegulon analysis revealed that IRF4 scored the highest. CONCLUSIONS: The pathogenesis of periodontitis was closely associated with the expression levels of the identified hub genes including CXCL8, CXCL1, CXCR4, SELL, CD19, and IKZF1. IRF4, the predicted transcription factor, might serve as a dominant upstream regulator.


Asunto(s)
Perfilación de la Expresión Génica , Periodontitis , Biología Computacional , Humanos , Análisis por Micromatrices , Mapas de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...